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The multifractal theory of turbulence uses a saddle-point evaluation in determining the
power-law behaviour of structure functions. Without suitable precautions, this could
lead to the presence of logarithmic corrections, thereby violating known exact relations
such as the four-fifths law. Using the theory of large deviations applied to the random
multiplicative model of turbulence and calculating subdominant terms, we explain
here why such corrections cannot be present.

1. Introduction
In fully developed turbulence there is now fairly good evidence for anomalous scal-

ing, that is scaling exponents which cannot be predicted by dimensional analysis. Some
of this evidence is reviewed in Frisch (1995). This reference also contains a detailed pre-
sentation of the multifractal formalism in the formulation of Parisi & Frisch (1985)
(see also Benzi et al. 1984). In this formalism, anomalous scaling for structure fun-
ctions (moments of velocity increments) is connected by a Legendre transformation
to the distribution of singularities of the velocity field. An earlier and alternative for-
malism for anomalous scaling was introduced by the Russian School of Kolmogorov
(Obukhov 1962; Kolmogorov 1962; Yaglom 1966). In its simplest version it uses a
random multiplicative model for calculating the statistical fluctuations of the energy
dissipation on various scales; the fractal properties of this model were discovered by
Mandelbrot (1974). The bridging of the two formalisms is discussed in Frisch (1995)
in the light of the theory of large deviations for the sums of independent identically
distributed random variables, discovered in the 1930s by Cramér (1938).

We recall that Parisi & Frisch’s original formulation gives an integral representation
of the structure functions which are then evaluated by the method of steepest descent
through a saddle point. Specifically, the structure function of order p for a separation
� is given by

Sp(�)

v
p

0

∼
∫

dµ(h)

(
�

�0

)ph+3−D(h)

. (1.1)

We have here used the notation of Frisch (1995): v0 is the r.m.s. velocity fluctuation, �0

is the integral scale, D(h) is the fractal dimension associated with singularities of
scaling exponent h and dµ(h) gives the weight of the different exponents. For a given
p, let us assume that the exponent ph + 3 − D(h) has a minimum ζp , as a function
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of h, and that it behaves quadratically near this minimum. Standard application of
Laplace’s method of steepest descent (see e.g. Bender & Orszag 1978) shows then
that, at small separations, Sp(�) varies as (�/�0)

ζp but with a logarithmic prefactor
[ln(�/�0)]

−1/2 stemming from the Gaussian integration near the minimum. For p = 3
this logarithmic prefactor is clearly inconsistent with the four-fifths law of Kolmogorov
(1941), one of the very few exact results in high-Reynolds-number turbulence, which
tells us that the third-order (longitudinal) structure function is given by −(4/5)ε�,
where ε is the mean energy dissipation per unit mass.

In Frisch (1995) this difficulty was handled by writing

lim
�→0

ln Sp(�)

ln �
= ζp. (1.2)

Indeed, by taking the logarithm of the structure function we change the multiplicative
logarithmic correction into an additive log-log correction which, after division by ln �,
becomes subdominant as � → 0. But if we do not take the logarithm of the structure
function, is there a logarithmic correction in the leading term whose presence, for
p = 3, would invalidate the standard multifractal formalism?

It is also well known that such logarithmic corrections are absent in the random
multiplicative model, a matter we shall come back to. Actually, as we shall see, the ran-
dom multiplicative model gives the key that allows us to understand why logarithmic
corrections are unlikely and are definitely ruled out in the third-order structure
function.

In § 2 we recall some basic facts about the random multiplicative model and the way
it can be reformulated in terms of multifractal singularities using large-deviations
theory. This is the theory introduced by Cramér (1938) which allows the estimation
of the (very small) probability that the sum of a large number of random variables
deviates strongly from the law of large numbers.† In this way the random multiplica-
tive model can be reformulated in standard multifractal language; naive application
of PF would then suggest the presence of logarithmic corrections. In § 3 we show how
a refined version of large-deviations theory, which goes beyond leading order, removes
the logarithmic corrections, which are cancelled by other logarithmic corrections in
the probability densities. In § 4 we summarize our findings, return to the general multi-
fractal formalism beyond the specific random multiplicative model and show that the
four-fifths law allows us to obtain the first subleading correction to the usual multi-
fractal probability.

2. The random multiplicative model
In the random multiplicative model (see e.g. Frisch 1995, for details) one assumes

that an integral-scale size cube with side �0 is subdivided into 8 first-level cubes of
half the side, which in turn are divided into 82 second-level cubes of side �02

−2, and
so on. The ‘local’ dissipation at the nth level with scale � = �02

−n is defined as

ε� = εW1W2 · · · Wn, (2.1)

where ε is a non-random mean dissipation per unit mass and the Wi are positive,
independently and identically distributed random variables of unit mean value.

† The reader is only assumed to be familiar with a very elementary version of large-deviations
theory, as explained e.g. in § 8.6.4. of Frisch (1995); a more detailed exposition for physicists
interested e.g. in the foundations of thermodynamics can be found in Lanford (1973); Varadhan
(1984) and Dembo & Zeitouni (1998) are written for the more mathematically minded reader.
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The ensemble average 〈ε�〉 is thus still equal to ε, so that the cascade is conservative
only in the mean. Since we are interested in describing the inertial-range scaling
properties (� � �0), we shall mainly focus our attention on high-order generations, i.e.
on large values of n, where large fluctuations of ε� are present. As a consequence, the
formalism of multiplicative variables leads to the presence of very large fluctuations.
The correspondence between multifractality and the probabilistic theory is expressed
by the relationship

n = − log2

�

�0

= − 1

ln 2
ln

�

�0

. (2.2)

Thus n can be viewed either as the number of W factors determining the local
dissipation or as the number of cascade steps leading from the ‘injection’ length scale
�0 to the current scale �.

It is elementary and standard to show that the moments of the local dissipation
are given by

Tp(�) ≡
〈
ε

p
l

〉
= 〈(εW1 · · · Wn)

p〉 = εp〈Wp〉n = εp

(
�

�0

)− log2〈Wp〉

. (2.3)

Then, following the suggestion originally made by Obukhov (1962), one calculates
the structure functions at separation � by the Kolmogorov (1941) expression in which
one replaces the mean dissipation by its local random value ε�, to obtain

Sp(�) ≈
〈
(�ε�)

p/3
〉

= lp/3Tp/3(�) ∝ �ζp , (2.4)

where ζp =p/3 − log2〈Wp/3〉. Obviously the third-order structure function has expo-
nent unity, as required by the four-fifths law and none of the structure functions has
any multiplicative logarithmic factor.

There is however an alternative and somewhat roundabout way of evaluating
the structure functions for the random multiplicative model. First we transform the
product of positive random variables into a sum by setting Wi =2−mi , to obtain

Tp(�) = 〈(ε2−m1 · · · 2−mn)p〉 = εp〈2−m1p · · · 2−mnp〉

= εp〈2−nxp〉 = εp

∫
dx e−nxp ln 2Pn(x), (2.5)

where

x ≡ m1 + . . . + mn

n
(2.6)

is the sample mean of n independent and identically distributed random variables and
Pn(x) its probability density function (PDF). When the PDF P (m) of the individual
variables mi falls off very quickly at large arguments, as is usually assumed in the
random multiplicative model (here we assume that P (m) falls off faster than expo-
nentially at large |m|), all the moments of the mi are finite and the law of large
numbers (Feller 1968) implies that Pn(x) is, for large n, increasingly concentrated
near the mean 〈m〉. The theory of large deviations (Cramér 1938) tells us roughly
that when x 
= 〈m〉 its probability falls off exponentially with n as ens(x), where the
Cramér function s(x) is non-positive up-convex and vanishes at x = 〈m〉. The Cramér
function can be expressed as the Legendre transform

s(x) = inf
α

[αx + lnZ(α)] (2.7)
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of the characteristic function

Z(α) ≡
∫

dy e−αyP (y) = 〈e−αm〉. (2.8)

The correct statement of large deviations is that lnPn(x)/n tends to s(x) as n → ∞.
Suppose however we somewhat sloppily write the large-deviations result as

Pn(x) ∼ ens(x) (incorrect) (2.9)

and use this in (2.5). We then obtain an integral representation for Tp(�) and thus
for Sp(�) which when evaluated by steepest descent for large n will give not just a
power law in � but also a multiplicative correction proportional to 1/

√
− ln(�/�0),

thus contradicting (2.4).
To resolve the paradox we need to extend the large-deviations result beyond the

leading order. This is called the theory of refined large deviations, first developed by
Bahadur & Ranga Rao (1960) and which is reviewed in Dembo & Zeitouni (1998). In
the next section we shall show how this can be done by rather elementary application
of steepest descent.

3. Refined large-deviations theory and the disappearance of logs
We now derive the asymptotic expansion for large n of the PDF Pn(x) of the sample

mean (2.6). Consider the characteristic function of the sample mean

Zn(α) ≡
∫

dx e−αxPn(x) =
〈
e−α(m1+...+mn)/n

〉
(3.1)

=
〈
e−αm1/n · · · e−αmn/n

〉
=

〈
e−αm/n

〉n
= Zn

(
α

n

)
, (3.2)

where Z(α) is the characteristic function for a single variable m, defined in (2.8). Since
we assumed that P (m) falls off faster than exponentially, Z(α) can be defined for
any complex α. Hence we can invert the Laplace transform appearing in (3.1) by a
Fourier integral along a contour C running from −i∞ to +i∞ (see figure 1)

Pn(x) =
1

2iπ

∫
C

dβ eβxZn

(
β

n

)
. (3.3)

We recast (3.3) in exponential form

Pn(x) =
1

2iπ

∫
C

dβ eβx+n ln Z(β/n) =
n

2iπ

∫
C

dγ en[γ x+ln Z(γ )], (3.4)

with the substitution γ =β/n. By (2.7) the argument of the exponential has a minimum
s(x) along the real γ -line at a point α�(x). Taking the contour C through α�(x), the
argument of the exponential will now have a maximum at this point; thus (3.4) can
be evaluated by steepest descent (see e.g. Bender & Orszag 1978).

We recall that for an integral of the form

I (n) =

∫
C

dy f (y)enφ(y), (3.5)

with a saddle point y� where φ′ vanishes and where neither f nor φ′′ vanish, the
large-n behaviour is given by

I (n) =

√
2π

−nφ′′(y�)
enφ(y�)f (y�)

[
1 + O

(
1

n

)]
. (3.6)
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Re β 

Im β

C

α�(x)

Figure 1. The integration contour C through the saddle α� in the complex β-plane.

The saddle point formula (3.6), applied to (3.4) gives, after taking a logarithm

lnPn(x)

n
= s(x) +

ln n

2n
− ln(2π Q)

2n
+ O

(
1

n2

)
, (3.7)

where Q > 0 is the second derivative of αx + lnZ(α), evaluated at the saddle point
α�(x). As n does not appear in Q, which is solely a function of x, the right-hand
side of (3.7) is thus structured as an inverse power series in n, except for the first
subleading term which contains a logarithm.

Note that expressions such as (3.7) are very common in thermodynamic applications
of large deviations when dealing with the logarithm of the (very large) number of
states (see e.g. Lanford 1973).

We can of course rewrite (3.7) in exponential form as

Pn(x) =
√

n/(2π Q) ens(x)

[
1 + O

(
1

n

)]
. (3.8)

In this way we see that Pn(x) has a multiplicative
√

n correction. Recalling that in the
random multiplicative model n= − log2(�/�0), this correction is just what we need to
cancel the unwanted logarithms in the structure functions obtained when the incorrect
form (2.9) is used.

It is important to note that the quantity which goes to a finite limit for large n is
ln Pn(x)/n and that for this quantity the correction we have determined is an additive
subleading term. This is why such terms should be regarded as subleading. Of course
the cancellation of logarithms for the random multiplicative model cannot take place
just at the first subleading order, since (2.4) is an exact expression and has no
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logarithms. To evaluate refined large deviations to all orders for a general random
multiplicative model is quite cumbersome and we shall not attempt it here because it
would not shed additional light on the issue discussed. It can however be done quite
easily for simple random multiplicative models such as the black-and-white model of
Novikov & Stewart (1964).

4. Back to multifractal turbulence
In multifractal language, the result obtained within the framework of the random

multiplicative model is that the probability P (�, h) to be within a distance � of the set
carrying singularities of scaling exponent between h and h + dh is not (�/�0)

3−D(h)dµ(h)
but is given, for small �, by

P (�, h) ∝
(

�

�0

)3−D(h) [
− ln

�

�0

]1/2

dµ(h), (4.1)

which has a subleading logarithmic correction. We recall that it must be qualified
‘subleading’ because the correct statement of the large-deviations leading-order result
involves the logarithm of the probability divided by the logarithm of the scale. The
correction is then a subleading additive term.

It is important to mention that the presence of a square root of a logarithm correc-
tion in the multifractal probability density has already been proposed by Meneveau &
Sreenivasan (1989) on the basis of a normalization requirement; they observed that
without such a correction the singularity spectrum f (α) comes out wrong; they also
pointed out that a similar correction has been proposed by van de Water & Schram
(1988) in connection with the measurement of generalized Renyi dimensions.

Returning to the multifractal formalism of turbulence, beyond the random multipli-
cative model, we observe that the usual multifractal ansatz as made in Parisi & Frisch
(1985) is only about the leading term of the probability, which is easily reinterpreted in
geometrical language. Hence, it does not allow us to determine logarithmic corrections
in structure functions. However, if we use Kolmogorov’s four-fifths law, we have an
additional piece of information which implies that the multifractal probability should
have a subleading logarithmic correction with precisely the form it has in (4.1). This
improved form then rules out subleading logarithmic corrections in any of the struc-
ture functions.

Finally, we should comment on those physical effects which we know for sure to be
responsible for subleading corrections (log or not log) to isotropic scaling. This is an
interesting question which we wish to briefly address. There is at least one known in-
stance which has a genuine logarithm in its third-order structure function, namely the
Burgers equation (in the limit of vanishing viscosity) with a Gaussian random force
which is white in time and has a 1/k spatial spectrum, where k is the wavenumber.
As shown by Chekhlov & Yakhot (1995) and Mitra et al. (2005), the Burgers equiva-
lent of the four-fifths law implies the presence of a logarithmic correction. What was
less obvious is that another frequently considered structure function, defined with the
absolute value of the velocity increment, also has a logarithmic correction but accom-
panied by a subdominant term (proportional to the separation without a log factor)
which conspires to make this structure function appear to have anomalous power-law
scaling with a non-trivial exponent (Mitra et al. 2005). This is an artifact which would
also be present in three-dimensional Navier–Stokes turbulence with 1/k forcing. A
number of other artifacts which can hide the true scaling were reviewed at a recent
workshop held in Beaulieu-sur-mer (see http://www.obs-nice.fr/etc7/anomalous).
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Particularly noteworthy are the contaminations by subdominant terms stemming
from anisotropy (see e.g. Biferale & Procaccia 2005).

We wish to thank J. Bec, M. Blank, G. Boffetta, A. Celani, A. Dembo, G. Eyink,
C. Meneveau, K. R. Sreenivasan and A. Vulpiani for illuminating discussions and sug-
gestions. This research has been partially supported by the MIUR under contract
Cofin. 2003 (prot. 020302002038).
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Scientifiques et Industrielles 736, 5–23.

Dembo, A. & Zeitouni, O. 1998 Large Deviations Techniques and Applications, 2nd edn. Springer.

Feller, W. 1968 An Introduction to Probability Theory and its Applications, 3rd edn, vol. 1. Wiley.

Frisch, U. 1995 Turbulence: the Legacy of A.N. Kolmogorov. Cambridge University Press.

Kolmogorov, A. N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk
SSSR 32, 16–18.

Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of
turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid Mech. 13,
82–85.

Lanford, O. E. 1973 Entropy and equilibrium states in classical mechanics. In Statistical Mechanics
and Mathematical Problems (ed. A. Lenard). Lecture Notes in Physics, vol. 20, pp. 1–113,
Springer.

Mandelbrot, B. 1974 Intermittent turbulence in self-similar cascades: divergence of high moments
and dimension of the carrier. J. Fluid Mech. 62, 331–358.

Meneveau, C. & Sreenivasan, K. R. 1989 Measurement of f (α) from scaling of histograms, and
applications to dynamical systems and fully developed turbulence. Phys. Lett. A 137, 103–112.

Mitra, D., Bec, J., Pandit, R. & Frisch, U. 2005 Is multiscaling an artifact in the stochastically
forced Burgers equation? Phys. Rev. Lett. 94, 194501.

Novikov, E. A. & Stewart, R. W. 1964 The intermittency of turbulence and the spectrum of energy
dissipation. Izv. Akad. Nauk SSSR, Ser. Geoffiz., no. 3, 408–413.

Obukhov, A. M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77–81.

Parisi, G. & Frisch, U. 1985 On the singularity structure of fully developed turbulence. In
Turbulence and Predictability in Geophysical Fluid Dynamics. Proc. Intl School of Physics
“Enrico Fermi” (1983) (ed. M. Ghil, R. Benzi & G. Parisi), pp. 84–87, North-Holland.

van de Water, W. & Schram, P. 1988 Generalized dimensions from near-neighbor information.
Phys. Rev. A 37, 3118–3125.

Varadhan, S. R. S. 1984 Large Deviations and Applications. SIAM.

Yaglom, A. M. 1966 Effect of fluctuations in energy dissipation rate on the form of turbulence
characteristics in the inertial subrange. Dokl. Akad. Nauk SSSR 166, 49–52.




